equivariant estimate - traduzione in russo
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

equivariant estimate - traduzione in russo

Equivariant homology theory; Borel construction; Equivariant cohomology ring; Equivariant cohomogy ring; Equivariant characteristic class; Draft:Equivariant homology

equivariant estimate      

математика

эквивариантная оценка

equivariant cohomology         

математика

эквивариантная когомология

equivariant map         
  • The centroid of a triangle (where the three red segments meet) is equivariant under [[affine transformation]]s: the centroid of a transformed triangle is the same point as the transformation of the centroid of the triangle.
MAPS WHOSE DOMAIN AND CODOMAIN ARE ACTED ON BY THE SAME GROUP, AND THE FUNCTION COMMUTES
Intertwiner; Intertwining map; Equivariance; Intertwining operator; Equivariant; Equivariant morphism

математика

эквивариантное отображение

Definizione

Estimator
·noun One who estimates or values; a valuer.

Wikipedia

Equivariant cohomology

In mathematics, equivariant cohomology (or Borel cohomology) is a cohomology theory from algebraic topology which applies to topological spaces with a group action. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space X {\displaystyle X} with action of a topological group G {\displaystyle G} is defined as the ordinary cohomology ring with coefficient ring Λ {\displaystyle \Lambda } of the homotopy quotient E G × G X {\displaystyle EG\times _{G}X} :

H G ( X ; Λ ) = H ( E G × G X ; Λ ) . {\displaystyle H_{G}^{*}(X;\Lambda )=H^{*}(EG\times _{G}X;\Lambda ).}

If G {\displaystyle G} is the trivial group, this is the ordinary cohomology ring of X {\displaystyle X} , whereas if X {\displaystyle X} is contractible, it reduces to the cohomology ring of the classifying space B G {\displaystyle BG} (that is, the group cohomology of G {\displaystyle G} when G is finite.) If G acts freely on X, then the canonical map E G × G X X / G {\displaystyle EG\times _{G}X\to X/G} is a homotopy equivalence and so one gets: H G ( X ; Λ ) = H ( X / G ; Λ ) . {\displaystyle H_{G}^{*}(X;\Lambda )=H^{*}(X/G;\Lambda ).}

Traduzione di &#39equivariant estimate&#39 in Russo